
A b s t r a c t. The soil-line vegetation indices for prediction of

corn canopy nitrogen content were investigated. Results indicated

that the vegetation indices applied were correlated with corn

canopy nitrogen content and the wavelengths between 630-860 nm

are suitable for nitrogen diagnosis. The second-order polynomial

equation was the best model for nitrogen content prediction among

different regression types. Analyses based on both predicted and

measured data were carried out to compare the performance of

existing vegetation indices.

K e y w o r d s: soil-line vegetation indices, satellite remote

sensing, corn, nitrogen

INTRODUCTION

Remote sensing offers the possibility of monitoring

agricultural areas for rapid and continuous assessment of

plant, soil and water resources (Kostrzewski et al., 2002).

Beside the large areas that can be studied, the increased ap-

plication of remote sensing systems in agricultural manage-

ment is mainly due to the improvements in spatial, spectral

and temporal resolution of remotely sensed observations

(Karimi et al., 2005). Researches show that determination of

spectral plant status by utilising visible and near-infrared

spectral responses from plant canopies is possible (Min and

Lee, 2005).

One of the applications of remote sensing is determi-

nation of plant physiological properties. Different studies

have been carried out to model crop properties with different

vegetation indices. For example, potato canopy nitrogen

content with red edge position (derived from reflectance

measurements) (Jongschaap and Booij, 2004), predicting

leaf area index (LAI) using SAVI (soil-adjusted vegetation

index), MSAVI2 (modified soil-adjusted vegetation index)

and SARVI (soil and atmospherically resistant vegetation

index) (Haboudane et al., 2004), NDVI (normalized diffe-

rence vegetation index) and GNDVI (green normalized

difference vegetation index) (Eldaw Elwadie et al., 2005),

predicting grain protein content (Zhao et al., 2005), estima-

ting sugar beet residue nitrogen credit (Beeri et al., 2005),

predicting rice nitrogen content with RVI (ratio vegetation

index) and NDVI (Jin-Heng et al., 2006), nitrogen doses

discrimination of wheat (Sena Junior et al., 2007), apple tree

nitrogen treatment with NDVI (Perry and Davenport, 2007),

wheat nitrogen content (Feng et al., 2008), determining rice

nitrogen topdressing rate based on real-time canopy reflec-

tance spectra (Xue and Yang, 2008), estimating nitrogen

uptake of barely with NDVI, GNDVI, RGNDI (red and

green normalized difference vegetation index), RGVI (red

and green ratio vegetation index), RVI, GVI (green vegeta-

tion index) (Li et al., 2008; and Pagola et al., 2009).

Many researchers assessed the correlation between diffe-

rent vegetation indices and the physiological status of crops.

They were mostly concerned with finding out suitable wave-

lengths for plant properties by spectro-radiometer and mostly

with laboratory experiments. As those results are not univer-

salized for real conditions, this research was conducted to

evaluate satellite remote sensing for nitrogen content dia-

gnosis on farm. Also, as the soil-line vegetation indices are

sensitive to vegetation and minimize soil effects, they could

be useful for physiological properties of vegetation such as

nitrogen content. Hence, the objectives of this study were to:

– investigate the possibility of using the soil-line vegetation

indices to determine nitrogen content in corn canopy on

filed,

– develop models to predict corn nitrogen content with

soil-line vegetation indices,
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– evaluate ASTER (the advanced space borne thermal

emission and reflection radiometer) satellite imagery for

the prediction of nitrogen content in corn canopy.

MATERIALS AND METHODS

Field experiments were carried out on a 23 ha single

cross corn farm in Pakdasht, Iran (35°30’N, 51°36’E), on

September 4, 2009. The field was fertilized according to usual

practice and nitrogen was applied as urea solution five times,

via 5 stage irrigations (Table 1). False colour composite

(FCC) imagery of the studied area is shown in Fig. 1.

Before sampling, the farm was meshed and coordina-

tion was collected by Magellan Explorist-600 GPS with the

accuracy of three meters and the farm map was reconstruc-

ted with AutoCAD software. For each pixel, five samples

(with an area of 1 m
2

for each sample) were harvested and

average data were used for analysis of total nitrogen content.

Leaves were separated and, after drying in an oven at 70°C

for 48 h and weighting on digital scale (with accuracy of 0.1 g),

the samples were ground to pass 1mm screen, then stored in

plastic bags and sent to the laboratory for determination of

total nitrogen content in leaf tissues by the Kjeldahl method

(Xue and Yang, 2008). Figure 2 shows the farm meshing and

plant samples.

Parameters which are important for vegetation studies

with satellite remote sensing are ground resolution, number

of bands and wavelengths ranges. In comparison with diffe-

rent sensors, the ASTER imagery has a wide range of wave-

lengths and good resolution. Hence, in this research, image-

ry of the study area was acquired with the ASTER for a sun-

ny and cloudless day on September 4, 2009. This sensor has

3 spectral bands in the visible and near-infrared (VNIR) in

520-860 nm, 6 bands in the short-wave-infrared (SWIR) in

1 600-2 430 nm and 5 bands in the thermal infrared (TIR)

region in 8 125-1 1650 nm with 15, 30 and 90 m ground re-

solution, respectively (Abrams, 2003).

Image processing was carried out with ENVI remote

sensing software. We used only imagery acquired at a single

point in time. Since a low atmospheric water content and clear

sky were present at the time of image acquisition, no atmos-

pheric correction was performed. Geometric correction was per-

formed with 1:25 000 scale file maps. A total of 24 sample

points were selected with good scattering in the whole ima-

ge. The nearest neighbour method was used for resampling

of data. RMS of geometric correction was 0.2 pixels.

Application of remote sensing techniques in agriculture

can be successful only if it is based on the knowledge of the

spectral-temporal properties of different crops and bare soils

(Piekarczyk, 2001). Over the past few years, expanding re-

search activities have focused on understanding the rela-

tionships between vegetation optical properties and photo-

synthetic pigments contents within green leaf tissues.

Soil reflectance in red and that in near infrared are

highly correlated with a positive correlation coefficient

which makes an assumption line which is called soil line.

Soil line in an area with a mixture of bare soil and varied

coverage of vegetation constitutes a triangle shape where the

soil line is the base of the triangle. As soil-line vegetation

indices are sensitive to crop reflectance and its properties

and they can minimize soil brightness, they were used to

predict corn canopy nitrogen content.
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Fig. 1. FCC (3-2-1 composition) imagery of ASTER sensor of the studied area.

No. Farm activities Date

1 Tillage June 12

2 Cultivating June 15

3 Seeding July 5

4 1st irrigation and N-application August 9

5 2nd irrigation and N-application August 26

6 3rd irrigation and N-application August 30

7 4th irrigation and N-application September 9

8 5th irrigation and N-application September 20

9 Harvest October 10

T a b l e  1. Agronomical calendar in experimental farm in 2009



SAVI, OSAVI (optimized soil-adjusted vegetation

index) and MSAVI2 were developed to minimize the soil back-

ground influence and brightness. SAVI includes a canopy

background adjustment factor L. The factor L is a function

of vegetation density, and its determination requires a prior

knowledge of vegetation amounts. The value of factor L is

critical in the minimisation of soil optical properties effects

on vegetation reflectance. Huete (1988) determined that an

adjustment factor of 0.5 could be used across different

vegetation densities and different soil types (Huete, 1988).

Attempting to improve SAVI with regard to the diffe-

rences in soil background developed an improved SAVI

(MSAVI2) with a self-adjustment factor L that does not ap-

pear in the formulation of MSAVI2 (Qi et al., 1994). It is

specifically designed for areas with low vegetation to mini-

mize the effect of bare soil. In all the formulas, NIR and R

are near infrared and red bands, respectively (Haboudane et

al., 2004, Lawrence and Ripple, 1998):

SAVI
(1 L)(NIR R)

(NIR R L)
L 0.5=

+ -

+ +
= , (1)

MSAVI2 0.5 2NIR 1 (2NIR 1) 8(NIR R)2= + - + - -é
ë

ù
û,(2)

OSAVI 1.6
NIR R

NIR R 0.16
=

-

+ +
. (3)

RESULTS AND DISCUSSION

To classify two bands of image data, 2D scatter plots

were used. Figure 3 shows the specification of the NIR, red

and green bands of ASTER imagery to each other.

In Fig. 3 corn canopy reflectance in the NIR region is

higher than that of the Red and Green bands. Corn canopy

reflectance decreased in the visible region and increased in

the NIR region. This trend was expected, as the corn pigment

content increases with growth and adequate nitrogen availa-

bility, resulting in more visible and NIR light absorption.

With plant growth and sufficient nitrogen availability, the

increased amount of biomass causes higher reflectance in

the NIR region. Pixels with higher NIR reflectance and lo-

wer red reflectance are dense vegetation cover, the base of

the ‘triangle’ shape is the soil line.

To determine the best model for the prediction of nitro-

gen content, different regression types were investigated.

Table 2 shows the specification of linear, logarithmic,

second-order, power and exponential regression types for

vegetation indices. The Table shows that the second-order

polynomial equation has the highest correlation with nitro-

gen content. Figures 4-6 show the relationships between corn

canopy nitrogen content and soil-line vegetation indices

with second-order polynomial equations.

The results of Figs 4-6 show that all vegetation indices

change with changing nitrogen content and the vegetation

indices were significantly sensitive and correlated to corn

canopy nitrogen content. It is concluded that SAVI, OSAVI

and MSAVI2 exhibit a similar trend to nitrogen variability

and all of them have high correlation to nitrogen content be-

cause of omitting soil optical property effects on vegetation

reflectance and minimising the background influence. As it

SOIL-LINE VEGETATION INDICES FOR PREDICTING OF CORN NITROGEN CONTENT 105

Fig. 2. Farm meshing and plant sampling.

a c

Fig. 3. NIR, red and green scatter plots.

b
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Indices Regression type Formula R2

SAVI

Linear N 4.6541(SAVI) 0.5592= - 0.730

Logarithmic N 2.7595Ln(SAVI) + 3.6337= 0.721

Second-order polynomial N 6.3707(SAVI) .8503(SAVI) + 1.63352= -2 0.737

Power N 4.2162(SAVI)1.2496= 0.733

Exponential N 0.6126exp.(2.143(SAVI))= 0.733

OSAVI

Linear N .5653(OSAVI) .3339= -7 1 0.732

Logarithmic N 3.4247Ln(OSAVI) + 4.8187= 0.727

Second-order polynomial N 1.7276(OSAVI) .986(OSAVI) - 0.97562= + 5 0.733

Power N = 7.8182(OSAVI)1.6752 0.706

Exponential N = 0.3883 exp (3.6854(OSAVI)) 0.706

MSAVI2

Linear N = 6.4544(MSAVI2)-1.4135 0.721

Logarithmic N = 3.5945 Ln(MSAVI2)+4.2937 0.710

Second-order polynomial N = 7.349(MSAVI2)2-1.7864(MSAVI2)+0.8866 0.747

Power N = 5.6873(MSAVI2)1.6438 0.718

Exponential N = 0.4197 exp (2.9457(MSAVI2)) 0.727

T a b l e  2. Regression types for predicting nitrogen content with SAVI, OSAVI and MSAVI2
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Fig. 4. Relationship between corn nitrogen content and: a – SAVI, b – OSAVI, c – MSAVI2.
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is shown in Table 1, spectral indices are dependent on the

NIR and red bands, whereas for ASTER imagery the NIR

and red bands are in the 630-690 nm and in 760-860 nm

wavelengths, respectively. Hence, it shows that the wave-

lengths between 630 and 860 nm are suitable for nitrogen

diagnosis. Other researches showed similar results, such as:

Blackmer et al. (1996) found 550-710 nm wavelength;

Lough and Varco (2000) found 550 nm; Buscaglia and

Varco (2002) found wavelengths between 550 to 728 nm for

cotton; Borhan et al. (2004) found 550-710 nm for corn and

540-680 and 740-1070 for rice; Min and Lee (2005) found

the wavelengths of 480 and 580 nm for citrus; and Reum

and Zhang (2007) found the wavelengths 550-700 nm for

corn as useful wavelengths for the diagnosis of nitrogen con-

tent. The correlation between different vegetation indices is

shown in Fig. 5. There is a linear relationship between

OSAVI and SAVI. Furthermore, the relationship between

MSAVI2-OSAVI and MSAVI2-SAVI is logarithmic. As

these vegetation indices are strongly correlated with each

other, they show similar trends with nitrogen content variation.

To investigate the accuracy of regression models for the

prediction of corn canopy nitrogen content, the measured

and predicted nitrogen values were compared. Equations

describing these relationships vary in second order polyno-

mial equation which had the highest correlation with nitro-

gen content between different regression models.

A total of 53 new samples were chosen randomly and har-

vested to determine nitrogen accumulation and were compa-

red with predicted data by SAVI, OSAVI and MSAVI2. The

relationship between predicted and measured nitrogen con-

tents for each vegetation index is shown in Fig. 6. The results

of comparison with different regression types for three

vegetation indices showed that the second-order poly-

nomial equation is the best regression type to model the cor-

relation between vegetation indices and nitrogen content.

A summary of final regression models for estimation of

corn canopy nitrogen contents by soil-line vegetation indi-

ces is presented in Table 3. The results showed that all

investigated vegetation indices were found to be highly cor-

related to corn canopy nitrogen contents and can be suc-

cessfully used to predict and model crop canopy nitrogen

content during the vegetation period. The performance of

MSAVI2 (with R
2
=0.7467) in predicting corn nitrogen

content is better than that of SAVI and OSAVI because of its

ability to minimize high reflectance of the soil.

CONCLUSIONS

1. The vegetation indices, SAVI, OSAVI and MSAVI2,

had high correlation to corn canopy nitrogen content.

2. The wavelengths between 630-860 nm are suitable

for nitrogen content diagnosis.

3. Soil-line vegetation indices can be successfully used

to predict and model crop canopy nitrogen content during

the vegetation period.

4. ASTER imagery as a multi spectral remote sensing

system is capable enough to be adapted for predicting corn

canopy nitrogen content.
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Indices Regression model R2

SAVI N = -0.1337(SAVI)2+1.3483(SAVI)-0.1077 0.7369

OSAVI N = 0.1529(OSAVI)2-0.0889(OSAVI)+1.240 0.7335

MSAVI2 N =

-0.055(MSAVI2)2-0.9439(MSAVI2)+0.408

0.7467

T a b l e  3. Regression models for estimation of corn canopy nitrogen content by vegetation indices

Fig. 6. Relationship between measured and predicted corn nitrogen content with : a – SAVI, b – OSAVI, c – MSAVI2.
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